
Conservative Python 3 Porting Guide
Documentation

Release 1.0

portingguide contributors

Sep 09, 2021

Contents

1 The Porting Process 3
1.1 Make Sure your Dependencies are Ported . 3
1.2 Run the Tests . 3
1.3 Drop Python 2.5 and Lower . 4
1.4 Port the Code . 4
1.5 Drop Python 2 . 5

2 Tools 7
2.1 Compatibility library: six . 7
2.2 Automated fixer: python-modernize . 7
2.3 Compatibility headers and guide for C extensions: py3c . 8
2.4 Automated checker: pylint --py3k . 8

3 Syntax Changes 9
3.1 Tabs and Spaces . 9
3.2 Tuple Unpacking in Parameter Lists . 9
3.3 Backticks . 10
3.4 The Inequality Operator . 10
3.5 New Reserved Words . 11
3.6 Other Syntax Changes . 12

4 Exceptions 13
4.1 The new except syntax . 13
4.2 The new raise syntax . 13
4.3 Caught Exception “Scope” . 14
4.4 Iterating Exceptions . 15
4.5 Raising Non-Exceptions . 15
4.6 The Removed StandardError . 15
4.7 Removed sys.exc_type, sys.exc_value, sys.exc_traceback 16

5 Importing 17
5.1 Absolute imports . 17
5.2 import * in Functions . 18
5.3 Import Cycles . 18

6 Standard Library Reorganization 19
6.1 Renamed Modules . 19

i

6.2 Removed modules . 19
6.3 The urllib modules . 20
6.4 The string module . 20

7 Numbers 21
7.1 Division . 21
7.2 Unification of int and long . 22
7.3 Octal Literals . 23

8 Strings 25
8.1 The Native String . 25
8.2 Conversion between text and bytes . 26
8.3 String Literals . 27
8.4 String operations . 28
8.5 Type checking . 28
8.6 File I/O . 28
8.7 Testing Strings . 29

9 Dictionaries 31
9.1 Removed dict.has_key() . 31
9.2 Changed Key Order . 32
9.3 Dict Views and Iterators . 33

10 Iterators 35
10.1 New behavior of map() and filter() . 35
10.2 New behavior of zip() . 37
10.3 New behavior of range() . 37
10.4 New iteration protocol: next() . 38
10.5 Generators cannot raise StopIteration . 39

11 Built-In Function Changes 41
11.1 The print() function . 41
11.2 Safe input() . 42
11.3 Removed file() . 42
11.4 Removed apply() . 43
11.5 Moved reduce() . 43
11.6 The exec() function . 43
11.7 Removed execfile() . 44
11.8 Moved reload() . 44
11.9 Moved intern() . 45
11.10 Removed coerce() . 45

12 Comparing and Sorting 47
12.1 Unorderable Types . 47
12.2 Rich Comparisons . 47
12.3 The cmp Function . 49
12.4 The cmp Argument . 50

13 Classes 53
13.1 New-Style Classes . 53
13.2 Metaclasses . 54

14 Comprehensions 55
14.1 Leaking of the Iteration Variable . 55
14.2 Comprehensions over Tuples . 56

ii

15 Other Core Object Changes 57
15.1 Function Attributes . 57
15.2 __oct__, __hex__ . 58
15.3 Old-style slicing: __getslice__, __setslice__, __delslice__ 58
15.4 Customizing truthiness: __bool__ . 59
15.5 Unbound Methods . 60

16 Invoking Python 61
16.1 Current interpreter . 61
16.2 Unix shebangs . 62

17 Other Changes 63
17.1 Raw buffer protocol: buffer and memoryview . 63
17.2 Doctests . 63
17.3 Reorganization of .pyc files . 64

18 Indices and tables 67

Index 69

iii

iv

Conservative Python 3 Porting Guide Documentation, Release 1.0

This document will guide you through porting your software to Python 3. It is geared towards projects that are being
ported because support for Python 2 is ending in a few years, and less for those that are porting because Python 3 as a
language allows writing expressive, maintainable and correct code more easily. It mainly targets projects with large,
conservative codebases.

We assume the maintainers of the codebase will only grudgingly accept porting-related changes, not necessarily that
you specifically have an aversion to Python 3. If you are not convinced that Python 3 is a good choice, please read
the foreword of Lennart Regebro’s book, and skim Nick Coghlan’s Python 3 Q & A, which discusses the issues (both
with Python 2 and 3) in depth.

This guide does not cover Python3-only features. If you’re interested in updating your code to take advantage of
current best practices, rather than doing the minimum amount of work necessary to keep your software working on
modern versions of Python, a better resource for you would be Lennart Regebro’s book, Supporting Python 3 (known
as “Porting to Python 3” in earlier editions).

This is an opinionated guide. It explains one tried way to do the porting, rather than listing all alternatives and leaving
you to research them and choose.

Still with us? Let’s dive in!

Contents 1

http://python3porting.com/foreword.html
http://python-notes.curiousefficiency.org/en/latest/python3/questions_and_answers.html
http://python3porting.com/

Conservative Python 3 Porting Guide Documentation, Release 1.0

2 Contents

CHAPTER 1

The Porting Process

This chapter documents the entire process of porting a conservative project to Python 3. We recommend that you read
it before you embark on your first porting project.

1.1 Make Sure your Dependencies are Ported

Before you start porting, any libraries that your code imports need to run with Python 3. Check if this is the case.

Porting status information of a library is usually available in setup.py or setup.cfg files, where compatible
Python versions can be mentioned in classifiers argument to setup().

Some projects took advantage of the backwards incompatible upgrade to clean up their interfaces. For any libraries
that are ported already, look in their documentation for any notes specific to Python 3, and if you find any, note them
for later.

If you depend on a library that is not ported, inquire of its authors about the porting status. If the library is open-source,
consider helping to port it – the experience will likely help in your own project. If authors are unwilling to port to
Python 3, or if the library is unmaintained, start looking for a replacement. For projects in Fedora, the portingdb
project lists known alternatives for dropped packages.

1.2 Run the Tests

It’s impractical to make any changes to untested code, let alone porting the entire codebase to a new version of the
programming language.

If the project has automatic tests, run them under Python 2 to make sure they pass. If not, write them – or you’ll need
to resort to testing manually.

3

http://fedora.portingdb.xyz

Conservative Python 3 Porting Guide Documentation, Release 1.0

1.3 Drop Python 2.5 and Lower

Python 2.6 and 2.7 were released in lockstep with the early 3.x versions, and contain several features that make
supporting both 2 and 3 possible in the same codebase.

Python 2.5 has been unmaintained for several years now, so any new code written for it does not have much of a future.
Bring this up with the software’s maintainers.

If compatibility with Python 2.5 is really necessary, we recommend that you fork the codebase, i.e. work on a copy
and regularly merge in any new development.

1.4 Port the Code

Actual porting can be conceptually split into two phases:

Modernization Migrate away from deprecated features that have a Python3-compatible equivalent available in
Python 2.

Porting Add support for Python 3 while keeping compatibility with Python 2 by introducing specific workarounds
and helpers.

We don’t recommend separating these phases. For larger projects, it is much better to separate the work by modules –
port low-level code first, then move on to things that depend on what’s already ported.

We provide some general porting tips below:

1.4.1 Use The Tools

The Tools chapter describes a selection of tools that can automate or ease the porting process, and warn about potential
problems or common regressions. We recommend that you get familiar with these tools before porting any substantial
project.

In particular, this guide includes “fixers” where appropriate. These can automate a lot, if not most, of the porting work.
But please read the notes for the python-modernize tool before running them to avoid any surprises.

1.4.2 Port Small Pieces First

If the codebase contains a small, self-contained module, port it first before moving on to larger pieces or the entire
code.

If you want to learn porting in a more practical way before you port your own software, you can help developers with
porting some open source software or your favorite library or application.

1.4.3 Use Separate Commits for Automated Changes

For changes that are mechanical, and easily automated, we recommend that you do only one type of change per
commit/patch. For example, one patch to change the except syntax, then another for the raise syntax.

Even more importantly, do not combine large automated changes with manual fixups. It is much easier to review two
patches: one done by a tool (which the reviewer can potentially re-run to verify the commit), and another that fixes up
places where human care is needed.

The descriptions of individual items in this guide are written so that you can use them in commit messages to explain
why each change is necessary and to link to more information.

4 Chapter 1. The Porting Process

Conservative Python 3 Porting Guide Documentation, Release 1.0

1.4.4 Follow the Rest of this Guide

The next chapter, Tools, explains how to automate porting and checking.

Each of the subsequent chapters explains one area where Python 3 differs from Python 2, and how to adapt the code.
The chapters are arranged roughly according to the order in which they are tackled in a typical project.

We recommend that you skim the introduction of each of the chapters, so that you know what you’re up against before
you start.

Note that while the guide is fairly comprehensive, there are changes it does not cover. Be prepared to find a few issues
specific to your code base that you’ll need to figure out independently.

Also note that the guide was written for Python 3.6. It includes several updates for newer versions, but we recom-
mend skimming [What’s New lists](https://docs.python.org/3/whatsnew/index.html) in the Python documentation to
familiarize yourself with the changes in newer versions of Python.

1.5 Drop Python 2

The final step of the porting is dropping support for Python 2, which can happen after a long time – even several years
from releasing a Python 3-compatible version. For less conservative projects, dropping Python 2 support will include
removing compatibility workarounds.

Targeting Python 3 only will enable you to start using all the new features in the new major version – but those are for
another guide.

1.5. Drop Python 2 5

https://docs.python.org/3/whatsnew/index.html

Conservative Python 3 Porting Guide Documentation, Release 1.0

6 Chapter 1. The Porting Process

CHAPTER 2

Tools

Several tools exist to automate as much of the porting as possible, and to check for common errors. Here is a survey
of tools we recommend.

2.1 Compatibility library: six

When porting a large piece of software, it is desirable to support both Python 2 and Python 3 in the same codebase.
Many projects will need this dual support for a long time, but even those that can drop Python 2 support as soon as the
port is done, will typically go through a period of adding Python 3 support, in which the software should continue to
work on Python 2.

Benjamin Peterson’s six module makes it practical to write such version-straddling code by offering compatibility
wrappers over the differences.

For example, the Python 3 syntax for specifying metaclasses is not valid Python 2, and the Python 2 way does nothing
in Python 3, so six provides an add_metaclass decorator for this purpose. It also provides stable names for
standard library modules that were moved or reorganized in Python 3.

Six is a run-time dependency, albeit a very small one. If your project is unfriendly to third-party dependencies, push
for this one as hard as possible. If you do not use six, you will most likely end up reimplementing it or outright
copying relevant pieces of it into your code.

2.2 Automated fixer: python-modernize

Some steps of the porting process are quite mechanical, and can be automated. These are best handled by the
python-modernize tool – a code-to-code translator that takes a Python 2 codebase and updates it to be com-
patible with both Python 2 and 3.

Note: python-modernize was built on top of 2to3 from of Python’s standard library. 2to3 was once intended
as the main porting tool. It turned out inadequate for that task, but python-modernize (among others) successfully

7

Conservative Python 3 Porting Guide Documentation, Release 1.0

reuses its general infrastructure. Because 2to3 itself is built into Python and thus missing improvements newer than
the the Python that runs it, python-modernize now uses a fork of 2to3 called fissix.

Assuming code is in version control, you’ll generally want to run python-modernize with the -wn flags: -w flag
causes the tool to actually change the affected files, and -n suppresses creating backups.

The tool operates by applying individual fixers – one for each type of change needed. You can select individual fixers
to run using the -f option. We’ve found that running a single fixer at a time results in changes that are easier to review
and more likely to be accepted, so that is what this guide will recommend. The order of fixers matters sometimes. This
guide will present them in order, but if you skip around, you will need to pay a bit more attention.

The tool always needs a directory (or individual files) to operate on; usually you’ll use the current directory (.).

Combining all that, the recommended invocation is:

python-modernize -wnf <fixer-name> .

While python-modernize is useful, it is not perfect. Some changes it makes might not make sense at all times,
and in many cases. It is necessary to know what and why is changed, and to review the result as closely as if a human
wrote it. This guide will provide the necessary background for each fixer as we go along.

2.3 Compatibility headers and guide for C extensions: py3c

Some projects involve extension modules written in C/C++, or embed Python in a C/C++-based application. An easy
way to find these is to search your codebase for PyObject. For these, we have two pieces of advice:

• Even though this is a conservative guide, we encourage you to try porting C extensions away from the Python
C API. For wrappers to external libraries we recommend CFFI; for code that needs to be fast there’s Cython.

While this is relatively disruptive, the result will very likely be more maintainable and less buggy, as well as
more portable to alternative Python implementations.

• If you decide to keep your C extension, follow a dedicated porting guide similar to this one, which also comes
with a six-like library for C extensions: py3c.

2.4 Automated checker: pylint --py3k

Pylint is a static code analyzer that can catch mistakes such as initialized variables, unused imports, and duplicated
code. It also has a mode that flags code incompatible with Python 3.

If you are already using Pylint, you can run the tool with the --py3k option on any code that is already ported. This
will prevent most regressions.

You can also run pylint --py3k on unported code to get an idea of what will need to change, though
python-modernize is usually a better choice here.

8 Chapter 2. Tools

https://cffi.readthedocs.org/en/latest/
http://cython.org/
http://py3c.readthedocs.org/en/latest/

CHAPTER 3

Syntax Changes

Python 3 cleaned up some warts of the language’s syntax.

The changes needed to accommodate this are mostly mechanical, with little chance of breaking code, so they work
well as the first patches to send to a project when intending to port it.

3.1 Tabs and Spaces

• Fixer: see below

• Prevalence: Very common (unless the code uses a style linter)

In Python 2, a tab character in indentation was considered equal to 8 spaces or less. In Python 3, a tab is only equal to
another tab, so the following code is rejected (whitespace highlighted):

def f(cond):
····if cond:
→ do_something()
····else:
→ do_something_else()

If your code mixes tabs and spaces, the easiest way to fix this is converting all tabs to spaces. You can use the following
Bash command for this:

find . -name '*.py' -type f -exec bash -c 'T=$(mktemp); expand -i -t 8 "$0" > "$T" &&
→˓mv "$T" "$0"' {} \;

3.2 Tuple Unpacking in Parameter Lists

• Fixer: python-modernize -wnf fissix.fixes.fix_tuple_params (fixup needed)

• Prevalence: Common

9

Conservative Python 3 Porting Guide Documentation, Release 1.0

Python 3 requires that each argument of a def function has a name. This simplifies code that uses introspection (such
as help systems, documentation generation, and automatic dispatchers), but it does have a drawback: tuples are no
longer allowed in formal parameter lists.

For example, functions like these are no longer allowed in Python 3:

def line((x1, y1), (x2, y2)):
connect_points(Point(x1, y1), Point(x2, y2))

lambda (key, item): (item, key)

The recommended fixer does a good job in finding places that need fixing, but it does need some manual cleanup. The
above example would be rewritten to:

def line(xxx_todo_changeme, xxx_todo_changeme1):
(x1, y1) = xxx_todo_changeme
(x2, y2) = xxx_todo_changeme1
connect_points(Point(x1, y1), Point(x2, y2))

lambda key_item: (key_item[1], key_item[0])

For def, each of the newly introduced variables should be renamed to something more appropriate.

As for lambda, this transformation can leave the code less readable than before. For each such lambda, you should
consider if replacing it with a regular named function would be an improvement.

3.3 Backticks

• Fixer: python-modernize -wnf fissix.fixes.fix_repr (with caveat)

• Prevalence: Common

The backtick (`) operator was removed in Python 3. It is confusingly similar to a single quote, and hard to type on
some keyboards. Instead of the backtick, use the equivalent built-in function repr().

The recommended fixer does a good job, though it doesn’t catch the case where the name repr is redefined, as in:

repr = None
print(`1+2`)

which becomes:

repr = None
print(repr(1+2))

Re-defining built-in functions is usually considered bad style, but it never hurts to check if the code does it.

3.4 The Inequality Operator

• Fixer: python-modernize -wnf fissix.fixes.fix_ne

• Prevalence: Rare

In the spirit of “There’s only one way to do it”, Python 3 removes the little-known alternate spelling for inequality: the
<> operator.

The recommended fixer will replace all occurrences with !=.

10 Chapter 3. Syntax Changes

https://docs.python.org/3/library/functions.html#repr

Conservative Python 3 Porting Guide Documentation, Release 1.0

3.5 New Reserved Words

• Fixer: None

• Prevalence: Rare

3.5.1 Constants

In Python 3, None, True and False are syntactically keywords, not variable names, and cannot be assigned to. This
was partially the case with None even in Python 2.6.

Hopefully, production code does not assign to True or False. If yours does, figure a way to do it differently.

3.5.2 async and await

Since Python 3.7, async and await are also keywords.

If your code uses these names, rename it. If other code depends on the names, keep the old name available for old
Python versions. The way to do this will be different in each case, but generally you’ll need to take advantage of the
fact that in Python’s various namespaces the strings 'async' and 'await' are still valid keys, even if they are not
accesible usual with the syntax.

For module-level functions, classes and constants, also assign the original name using globals(). For example, a
function previously named async could look like this:

def asynchronous():
"""...

This function used to be called `async`.
It is still available under old name.
"""

globals()['async'] = asynchronous

For methods, and class-level constants, assign the original name using setattr:

class MyClass:
def asynchronous(self):

"""...

This method used to be called `async`.
It is still available under old name.
"""

setattr(MyClass, 'async', MyClass.asynchronous)

For function parameters, more work is required. The result will depend on whether the argument is optional and
whether None is a valid value for it. Here is a general starting point:

def process_something(asynchronous=None, **kwargs):
if asynchronous is None:

asynchronous = kwargs.get('async', None)
else:

if 'async' in kwargs:
raise TypeError('Both `asynchronous` and `async` specified')

(continues on next page)

3.5. New Reserved Words 11

https://docs.python.org/3/library/functions.html#globals

Conservative Python 3 Porting Guide Documentation, Release 1.0

(continued from previous page)

if asynchronous is None:
raise TypeError('The argument `asynchronous` is required')

For function arguments, if the parameter cannot be renamed as above, use “double star” syntax that allows you to pass
arbitrary argument names:

process_something(**{'async': True})

3.6 Other Syntax Changes

For convenience and completeness, this section lists syntax changes covered in other chapters:

• The print() function

• The new except syntax

• The new raise syntax

• import * in Functions

• The L suffix not allowed in numeric literals

• Octal Literals

• The exec() function

12 Chapter 3. Syntax Changes

CHAPTER 4

Exceptions

Very early Python versions used simple strings to signalize errors. Later, Python allowed raising arbitrary classes, and
added specialized exception classes to the standard library. For backwards compatibility reasons, some deprecated
practices were still allowed in Python 2. This presents confusion to learners of the language, and prevents some
performance optimizations.

Python 3 removes the deprecated practices. It also further consolidates the exception model. Exceptions are now
instances of dedicated classes, and contain all information about the error: the type, value and traceback.

This chapter mentions all exception-related changes needed to start supporting Python 3.

4.1 The new except syntax

• Fixer: python-modernize -wnf fissix.fixes.fix_except

• Prevalence: Very common

In Python 2, the syntax for catching exceptions was except ExceptionType:, or except
ExceptionType, target: when the exception object is desired. ExceptionType can be a tuple, as
in, for example, except (TypeError, ValueError):.

This could result in hard-to-spot bugs: the command except TypeError, ValueError: (note lack of paren-
theses) will only handle TypeError. It will also assign the exception object to the name ValueError, shadowing
the built-in.

To fix this, Python 2.6 introduced an alternate syntax: except ExceptionType as target:. In Python 3, the
old syntax is no longer allowed.

You will need to switch to the new syntax. The recommended fixer works quite reliably, and it also fixes the Iterating
Exceptions problem described below.

4.2 The new raise syntax

• Fixer: python-modernize -wnf libmodernize.fixes.fix_raise -f libmodernize.

13

Conservative Python 3 Porting Guide Documentation, Release 1.0

fixes.fix_raise_six

• Prevalence: Common

Python 2’s raise statement was designed at a time when exceptions weren’t classes, and an exception’s type, value,
and traceback components were three separate objects:

raise ValueError, 'invalid input'
raise ValueError, 'invalid input', some_traceback

In Python 3, one single object includes all information about an exception:

raise ValueError('invalid input')

e = ValueError('invalid input')
e.__traceback__ = some_traceback
raise e

Python 2.6 allows the first variant. For the second, re-raising an exception, the Compatibility library: six library
includes a convenience wrapper that works in both versions:

import six
six.reraise(ValueError, 'invalid input', some_traceback)

The recommended fixers will do these conversions automatically and quite reliably, but do verify the resulting changes.

4.3 Caught Exception “Scope”

• Fixer: None

• Prevalence: Rare

As discussed previously, in Python 3, all information about an exception, including the traceback, is contained in the
exception object. Since the traceback holds references to the values of all local variables, storing an exception in a
local variable usually forms a reference cycle, keeping all local variables allocated until the next garbage collection
pass.

To prevent this issue, to quote from Python’s documentation:

When an exception has been assigned using as target, it is cleared at the end of the except clause. This is
as if

except E as N:
foo

was translated to

except E as N:
try:

foo
finally:

del N

This means the exception must be assigned to a different name to be able to refer to it after the except
clause.

Unfortunately, Automated fixer: python-modernize does not provide a fixer for this change. This issue results in a loud
NameError when tests are run. When you see this error, apply the recommended fix – assign a different name to the
exception to use it outside the except clause.

14 Chapter 4. Exceptions

https://docs.python.org/3/reference/compound_stmts.html#try

Conservative Python 3 Porting Guide Documentation, Release 1.0

4.4 Iterating Exceptions

• Fixer: python-modernize -wnf fissix.fixes.fix_except (but see caveat below)

• Prevalence: Rare

In Python 2, exceptions were iterable, so it was possible to “unpack” the arguments of an exception as part of the
except statement:

except RuntimeError as (num, message):

In Python 3, this is no longer true, and the arguments must be accessed through the args attribute:

except RuntimeError as e:
num, message = e.args

The recommended fixer catches the easy cases of unpacking in except statements. If your code iterates through
exceptions elsewhere, you need to manually change it to iterate over args instead.

Additionally, the fixer does not do a good job on single-line suites such as:

except RuntimeError as (num, message): pass

Inspect the output and break these into multiple lines manually.

4.5 Raising Non-Exceptions

• Fixer: None

• Prevalence: Rare

In Python 3, an object used with raise must be an instance of BaseException, while Python 2 also allowed
old-style classes. Similarly, Python 3 bans catching non-exception classes in the except statement.

Raising non-Exception classes was obsolete as early as in Python 2.0, but code that does this can still be found.

Each case needs to be handled manually. If there is a dedicated class for the exception, make it inherit from
Exception. Otherwise, switch to using a dedicated Exception class.

4.6 The Removed StandardError

• Fixer: python-modernize -wnf fissix.fixes.fix_standarderror (but see caveat below)

• Prevalence: Rare

The StandardError class is removed in Python 3. It was the base class for built-in exceptions, and it proved to be
an unnecessary link in almost any exception’s inheritance chain.

The recommended fixer will replace all uses of StandardError with Exception. Review the result to check if
this is correct.

Some code might rely on the name of an exception class, or on exceptions not derived from StandardError, or
otherwise handle StandardError specially. You’ll need to handle these casses manually.

4.4. Iterating Exceptions 15

https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/exceptions.html#Exception

Conservative Python 3 Porting Guide Documentation, Release 1.0

4.7 Removed sys.exc_type, sys.exc_value, sys.
exc_traceback

• Fixer: None

• Prevalence: Rare

These exception-related attributes of the sys module are not thread-safe, and were deprecated since Python 1.5. They
have been dropped for Python 3.

The information can be retrieved with a call to exc_info():

exc_type, exc_value, exc_traceback = sys.exc_info()

16 Chapter 4. Exceptions

https://docs.python.org/3/library/sys.html#sys.exc_info

CHAPTER 5

Importing

Python 3 brings a complete overhaul of the way import works – the import machinery was ported from C to Python.

Developer-visible changes are summarised below.

5.1 Absolute imports

• Fixer: python-modernize -wnf libmodernize.fixes.fix_import (See caveat below)

• Prevalence: Common

• Future import: from __future__ import absolute_import

• Specification: PEP 328

Under Python 2, when importing from inside a package, the package’s own modules were considered before global
ones. For example, given a package like this:

mypkg/
__init__.py
collections.py
core.py
...

If core.py contains:

from collections import deque

it would import the deque from mypkg/collections.py. The standard library’s collectionsmodule would
be unavailable.

In Python 2.5, the situation began changing with the introduction of explicit relative imports, using a dot (.) before
the submodule name. Given the structure above, these statements would be equivalent (in core.py):

17

https://www.python.org/dev/peps/pep-0328/

Conservative Python 3 Porting Guide Documentation, Release 1.0

from .collections import deque
from mypkg.collections import deque

Additionally, a future import was added to make all imports absolute (unless explicitly relative):

from __future__ import absolute_import

Using this feature, from collections import dequewill import from the standard library’s collections
module.

In Python 3, the feature becomes the default.

To prepare for this, make sure all imports are either absolute, or explicitly relative. Both the mypkg.collections
style and the .collections style are adequate; we recommend the former for increased readability1.

The recommended fixer simply adds the future import to all files that do a potentially ambiguous import. This may be
too much churn for your project; in most cases it is enough to verify that your imports are not ambiguous.

5.2 import * in Functions

• Fixer: None

• Prevalence: Rare

In Python 3, “star imports” are only allowed on the module level, not in classes or functions. For example, this won’t
work:

def coords(angle, distance):
from math import *
return distance * cos(angle), distance * sin(angle)

The reason for this limitation is that a function’s local variables are optimized at compile time, but the names imported
via * are not known in advance. Python 2 reverted to using unoptimized bytecode for such functions; Python 3 includes
only the optimized case.

This code raised a SyntaxWarning already in Python 2.6. In Python 3, this becomes a SyntaxError, so module-
level test coverage is enough to spot the error.

5.3 Import Cycles

• Fixer: None

• Prevalence: Rare

Python 3 introduced a reworked implementation of import in the form of the importlib module. The new ma-
chinery is backwards-compatible in practice, except that some import cycles, especially those involving submodules,
now raise ImportError.

If you encounter such errors, check for import cycles (these should be visible from the traceback as one module
imported multiple times). In most cases you can break circular imports by refactoring common code into a separate
module.

1 The downside of spelling out the package name is that it becomes harder to rename or reorganize the package. In practice, if you do rename a
project, the work added by absolute imports tends to be insignificant compared to updating all external modules that import your package.

18 Chapter 5. Importing

https://docs.python.org/3/library/exceptions.html#SyntaxWarning
https://docs.python.org/3/library/exceptions.html#SyntaxError
https://docs.python.org/3/library/importlib.html#module-importlib
https://docs.python.org/3/library/exceptions.html#ImportError

CHAPTER 6

Standard Library Reorganization

The standard library has been reorganized for Python 3.

6.1 Renamed Modules

• Fixer: python-modernize -wnf libmodernize.fixes.fix_imports_six

• Prevalence: Common

Many modules were simply renamed, usually to unify file naming conventions (e.g. ConfigParser to
configparser) or to consolidate related modules in a namespace (e.g. tkFont to tkinter.font).

The Compatibility library: six library includes six.moves, a pseudo-package that exposes moved modules under
names that work in both Python 2 and 3. For example, instead of:

from ConfigParser import ConfigParser

you should import from six.moves:

from six.moves.configparser import ConfigParser

A list of all renamed modules is included in six documentation.

The recommended fixer will automatically change imports to use six.moves.

6.2 Removed modules

• Fixer: None

• Prevalence: Uncommon

Some modules have been removed entirely. Usually, these modules were supplanted by better alternatives (e.g.
mimetools by email), specific to now-unsupported operating systems (e.g. fl), or known to be broken (e.g.
Bastion).

19

https://docs.python.org/2/library/configparser.html#module-ConfigParser
https://docs.python.org/3/library/configparser.html#module-configparser
https://docs.python.org/3/library/tkinter.font.html#module-tkinter.font
https://pythonhosted.org/six/#module-six.moves
https://docs.python.org/2/library/mimetools.html#module-mimetools
https://docs.python.org/3/library/email.html#module-email
https://docs.python.org/2/library/fl.html#module-fl
https://docs.python.org/2/library/bastion.html#module-Bastion

Conservative Python 3 Porting Guide Documentation, Release 1.0

Lennart Regebro compiled a list of these modules in the book “Supporting Python 3”, which is available online.

If your code uses any of the removed modules, check the Python 2 documentation of the specific module for recom-
mended replacements.

6.3 The urllib modules

• Fixer: None

• Prevalence: Common

The urllib, urllib2 and urlparse modules were reorganized more heavily, with individual functions
and classes redistributed to submodules of Python 3’s urllib: urllib.parse, urllib.error, urllib.
request, and urllib.response.

These functions are included in six.moves, and the six documentation has details on what moved where. Use this
information to adjust your code.

The fix_imports_six fixer recommended above does not handle all urllib moves, so manual changes may be
necessary.

6.4 The string module

• Fixer: None

• Prevalence: Rare

In Python 2, the string module included functions that mirrored str methods, such as string.lower() and
string.join() that mirror str.lower() and str.join(). These have been deprecated since Python 2.4,
and they are removed in Python 3.

Convert all uses of these functions to string methods.

For example, this code:

import string
products = ['widget', 'thingy', 'whatchamacallit']
print string.join(products, sep=', ')

should be replaced with:

products = ['widget', 'thingy', 'whatchamacallit']
print(', '.join(products))

The Automated fixer: python-modernize tool doesn’t provide an automated fixer for these changes.

20 Chapter 6. Standard Library Reorganization

http://python3porting.com/stdlib.html#removed-modules
https://docs.python.org/2/library/urllib.html#module-urllib
https://docs.python.org/2/library/urllib2.html#module-urllib2
https://docs.python.org/2/library/urlparse.html#module-urlparse
https://docs.python.org/3/library/urllib.html#module-urllib
https://docs.python.org/3/library/urllib.parse.html#module-urllib.parse
https://docs.python.org/3/library/urllib.error.html#module-urllib.error
https://docs.python.org/3/library/urllib.request.html#module-urllib.request
https://docs.python.org/3/library/urllib.request.html#module-urllib.request
https://docs.python.org/3/library/urllib.request.html#module-urllib.response
https://pythonhosted.org/six/#module-six.moves
https://docs.python.org/2/library/string.html#string.lower
https://docs.python.org/2/library/string.html#string.join
https://docs.python.org/3/library/stdtypes.html#str.lower
https://docs.python.org/3/library/stdtypes.html#str.join

CHAPTER 7

Numbers

There have been two major changes in how Python 3 handles numbers: true division replaces truncating division, and
the long type was merged into int.

This section describes these changes in detail, along with other, minor ones.

7.1 Division

• Fixer: None

• Future import: from __future__ import division

• Prevalence: Common

In Python 2, dividing two integers resulted in an integer:

>>> print 2 / 5
0

This truncating division was inherited from C-based languages, but confused people who don’t know those languages,
such as those coming from JavaScript or pure math.

In Python 3, dividing two integers results in a float:

>>> print(2 / 5)
0.4

The // operator, which was added all the way back in Python 2.2, always performs truncating division:

whole_minutes = seconds // 60

The from __future__ import division directive causes the / operator to behave the same in Python 2 as
it does in Python 3. We recommend adding it to all modules that use the division operator, so that differences between
Python versions are minimal.

When adding the future import, check all divisions in the file and decide if the operator should be changed to //.

21

Conservative Python 3 Porting Guide Documentation, Release 1.0

7.1.1 Special Methods

To overload the / operator for a class in Python 2, one defined the __div__ special method. With the division
change, there are two methods to define:

• __floordiv__

Defines the behavior of the // operator.

• __truediv__

Defines the behavior of the / operator in Python 3, and in Python 2 when the division future
import is in effect.

• __div__

Defines the behavior of the / operator in Python 2, when the division future import is not in
effect.

Not used at all in Python 3.

Check all classes that define __div__, and add __floordiv__ and/or __truediv__ as needed. This can be
done with a simple alias:

class CustomClass(object):
def __div__(self, other):

return _divide(self, other)

__truediv__ = __div__

7.2 Unification of int and long

Python 3 does not have a long type. Instead, int itself allows large values (limited only by available memory); in
effect, Python 2’s long was renamed to int.

This change has several consequences.

7.2.1 Removal of the long type

• Fixer: python-modernize -wnf fissix.fixes.fix_long

• Prevalence: Common

The long builtin no longer exists.

In Python 2, calling int on a number that doesn’t fit in the machine int range would automatically create a long
with the appropriate value.

The same automatic conversion to long happened on all operations on int that overflow: for example, 10**50
resulted in a long on most systems.

The range of Python 2’s int was system-dependent. Together with the automatic conversion, this means that code
that depends on the long/int distinction is fragile – Python 2 didn’t provide very strong guarantees regarding the
distinction.

If your code relies on the distinction, you will need to modify it.

Once your code does not rely on the long/int distinction, you can replace all calls to long with int. The recom-
mended fixer will do this.

22 Chapter 7. Numbers

Conservative Python 3 Porting Guide Documentation, Release 1.0

7.2.2 The L suffix not allowed in numeric literals

• Fixer: python-modernize -wnf fissix.fixes.fix_numliterals (but see below)

• Prevalence: Very common

In Python 2, 12345L designated a long literal. For numbers that exceed the range of int, the L suffix was optional:
1234567890123456789012345678901234567890 always named a long on current architectures.

In Python 3, the L suffix is not allowed.

In code that does not depend on the int/long distinction, you can simply drop the L suffix. The recommended fixer
will do this, along with octal literal fixes described below.

If the specific type is important, you will need to refactor the code so that it does not rely on the distinction, as discussed
above.

7.2.3 The L suffix dropped from the representation

• Fixer: None

• Prevalence: Rare

In Python 2, canonical representations of long integers included the L suffix. For example, repr(2**64) was
18446744073709551616L on most systems. In Python 3, the suffix does not appear. Note that this only affected
repr, the string representation (given by str() or print()) had no suffix.

The canonical representations are rarely used, except in doctests.

As discussed previously, relying on the int/long distinction is fragile. By extension, relying on the output of repr
of long numbers is also fragile. Call str() instead of repr() when the result might be a (long) integer.

7.3 Octal Literals

• Fixer: python-modernize -wnf fissix.fixes.fix_numliterals (but see below)

• Prevalence: Uncommon

Python 2’s other holdover from C-based languages is the syntax of octal literals: zero-prefixed numbers are interpreted
in base 8. For example, the value of 0123was 83, and 0987 caused a rather unhelpful SyntaxError. This is surprising
to those not familiar with C, and it can lead to hard-to-spot errors.

Python 2.6 introduced the 0o prefix as an alternative to plain 0. Python 3 drops the 0 prefix: integer literals that start
with 0 are illegal (except zero itself, and 0x/0o/0b prefixes).

You will need to change the leading zero in all 0-prefixed literals to 0o. The recommended fixer will do this automat-
ically, along with long literal fixes described above.

7.3. Octal Literals 23

Conservative Python 3 Porting Guide Documentation, Release 1.0

24 Chapter 7. Numbers

CHAPTER 8

Strings

From a developer’s point of view, the largest change in Python 3 is the handling of strings. In Python 2, the str type
was used for two different kinds of values – text and bytes, whereas in Python 3, these are separate and incompatible
types.

• Text contains human-readable messages, represented as a sequence of Unicode codepoints. Usually, it does not
contain unprintable control characters such as \0.

This type is available as str in Python 3, and unicode in Python 2.

In code, we will refer to this type as unicode – a short, unambiguous name, although one that is not built-in
in Python 3. Some projects refer to it as six.text_type (from the six library).

• Bytes or bytestring is a binary serialization format suitable for storing data on disk or sending it over the wire.
It is a sequence of integers between 0 and 255. Most data – images, sound, configuration info, or text – can be
serialized (encoded) to bytes and deserialized (decoded) from bytes, using an appropriate protocol such as PNG,
VAW, JSON or UTF-8.

In both Python 2.6+ and 3, this type is available as bytes.

Ideally, every “stringy” value will explicitly and unambiguously be one of these types (or the native string, below).
This means that you need to go through the entire codebase, and decide which value is what type. Unfortunately, this
process generally cannot be automated.

We recommend replacing the word “string” in developer documentation (including docstrings and comments) with
either “text”/“text string” or “bytes”/“byte string”, as appropriate.

8.1 The Native String

Additionally, code that supports both Python 2 and 3 in the same codebase can use what is conceptually a third type:

• The native string (str) – text in Python 3, bytes in Python 2

Custom __str__ and __repr__ methods and code that deals with Python language objects (such as at-
tribute/function names) will always need to use the native string, because that is what each version of Python uses
for internal text-like data. Developer-oriented texts, such as exception messages, could also be native strings.

25

Conservative Python 3 Porting Guide Documentation, Release 1.0

For other data, you should only use the native string if all of the following hold:

• you are working with textual data,

• Under Python 2, each “native string” value has a single well-defined encoding (e.g. UTF-8 or locale.
getpreferredencoding()), and

• you do not mix native strings with either bytes or text – always encode/decode diligently when converting to
these types.

Native strings affect the semantics under Python 2 as little as possible, while not requiring the resulting Python 3 API
to feel bad. But, having a third incompatible type makes the porting process harder. Native strings are suitable mostly
for conservative projects, where ensuring stability under Python 2 justifies extra porting effort.

8.2 Conversion between text and bytes

It is possible to encode() text to binary data, or decode() bytes into a text string, using a particular encoding. By
itself, a bytes object has no inherent encoding, so it is not possible to encode/decode without knowing the encoding.

It’s similar to images: an open image file might be encoded in PNG, JPG, or another image format, so it’s not possible
to “just read” the file without either relying on external data (such as the filename), or effectively trying all alternatives.
Unlike images, one bytestring can often be successfully decoded using more than one encoding.

8.2.1 Encodings

Never assume a text encoding without consulting relevant documentation and/or researching a string’s use cases. If an
encoding for a particular use case is determined, document it. For example, a function docstring can specify that some
argument is “a bytestring holding UTF-8-encoded text data”, or module documentation may clarify that „as per RFC
4514, LDAP attribute names are encoded to UTF-8 for transmission“.

Some common text encodings are:

• UTF-8: A widely used encoding that can encode any Unicode text, using one to four bytes per character.

• UTF-16: Used in some APIs, most notably Windows and Java ones. Can also encode the entire Unicode
character set, but uses two to four bytes per character.

• ascii: A 7-bit (128-character) encoding, useful for some machine-readable identifiers such as hostnames
('python.org'), or textual representations of numbers ('1234', '127.0.0.1'). Always check the rel-
evant standard/protocol/documentation before assuming a string can only ever be pure ASCII.

• locale.getpreferredencoding(): The “preferred encoding” for command-line arguments, environ-
ment variables, and terminal input/output.

If you are choosing an encoding to use – for example, your application defines a file format rather than using a format
standardized externally – consider UTF-8. And whatever your choice is, explicitly document it.

8.2.2 Conversion to text

There is no built-in function that converts to text in both Python versions. The six library provides six.text_type,
which is fine if it appears once or twice in uncomplicated code. For better readability, we recommend using unicode,
which is unambiguous and clear, but it needs to be introduced with the following code at the beginning of a file:

26 Chapter 8. Strings

https://docs.python.org/2/library/locale.html#locale.getpreferredencoding
https://docs.python.org/2/library/locale.html#locale.getpreferredencoding
https://docs.python.org/3/library/stdtypes.html#str.encode
https://docs.python.org/3/library/stdtypes.html#bytes.decode

Conservative Python 3 Porting Guide Documentation, Release 1.0

try:
Python 2: "unicode" is built-in
unicode

except NameError:
unicode = str

8.2.3 Conversion to bytes

There is no good function that converts an arbitrary object to bytes, as this operation does not make sense on arbitrary
objects. Depending on what you need, explicitly use a serialization function (e.g. pickle.dumps()), or convert to
text and encode the text.

8.3 String Literals

• Fixer: None

• Prevalence: Very common

Quoted string literals can be prefixed with b or u to get bytes or text, respectively. These prefixes work both in Python
2 (2.6+) and 3 (3.3+). Literals without these prefixes result in native strings.

In Python 3, the u prefix does nothing; it is only allowed for backwards compatibility. Likewise, the b prefix does
nothing in Python 2.

Add a b or u prefix to all strings, unless a native string is desired. Unfortunately, the choice between text and bytes
cannot generally be automated.

8.3.1 Raw Unicode strings

• Fixer: None

• Prevalence: Rare

In Python 2, the r prefix could be combined with u to avoid processing backslash escapes. However, this did not turn
off processing Unicode escapes (\u.... or \U........), as the u prefix took precedence over r:

>>> print u"\x23\u2744" # Python 2 with Encoding: UTF-8
#
>>> print ur"\x23\u2744" # Python 2 with Encoding: UTF-8
\x23

This may be confusing at first. Keeping this would be even more confusing in Python 3, where the u prefix is a no-
op with backwards-compatible behavior. Python 3 avoids the choice between confusing or backwards-incompatible
semantics by forbidding ur altogether.

Avoid the ur prefix in string literals.

The most straightforward way to do this is to use plain u literals with \\ for a literal backslash:

>>> print(u"\\x23\u2744")
\x23

8.3. String Literals 27

https://docs.python.org/3/library/pickle.html#pickle.dumps

Conservative Python 3 Porting Guide Documentation, Release 1.0

8.4 String operations

In Python 3, text and bytes cannot be mixed. For example, these are all illegal:

b'one' + 'two'

b', '.join(['one', 'two'])

import re
pattern = re.compile(b'a+')
pattern.match('aaaaaa')

Encode or decode the data to make the types match.

8.5 Type checking

• Fixer: python-modernize -wnf libmodernize.fixes.fix_basestring

• Prevalence: Rare

Because the str and unicode types in Python 2 could be used interchangeably, it sometimes didn’t matter which
of the types a particular value had. For these cases, Python 2 provided the class basestring, from which both str
and unicode derived:

if isinstance(value, basestring):
print("It's stringy!")

In Python 3, the concept of basestring makes no sense: text is only represented by str.

For type-checking text strings in code compatible with both versions, the six library offers string_types, which
is (basestring,) in Python 2 and (str,) in Python 3. The above code can be replaced by:

import six

if isinstance(value, six.string_types):
print("It's stringy!")

The recommended fixer will import six and replace any uses of basestring by string_types.

8.6 File I/O

• Fixer: python-modernize -wnf libmodernize.fixes.fix_open

• Prevalence: Common

In Python 2, reading from a file opened by open() yielded the generic str. In Python 3, the type of file contents
depends on the mode the file was opened with. By default, this is text strings; b in mode selects bytes:

with open('/etc/passwd') as f:
f.read() # text

with open('/bin/sh', 'rb') as f:
f.read() # bytes

28 Chapter 8. Strings

https://docs.python.org/2/library/functions.html#open

Conservative Python 3 Porting Guide Documentation, Release 1.0

On disk, all files are stored as bytes. For text-mode files, their content is decoded automatically. The default encoding is
locale.getpreferredencoding(False), but this might not always be appropriate, and may cause different
behavior across systems. If the encoding of a file is known, we recommend always specifying it:

with open('data.txt', encoding='utf-8') as f:
f.read()

Similar considerations apply when writing to files.

The behavior of open is quite different between Python 2 and 3. However, from Python 2.6 on, the Python 3 version
is available in the io module. We recommend replacing the built-in open function with io.open, and using the
new semantics – that is, text files contain unicode:

from io import open

with open('data.txt', encoding='utf-8') as f:
f.read()

Note that under Python 2, the object returned by io.open has a different type than that returned by open. If your
code does strict type checking, consult the notes on the file() built-in.

The recommended fixer will add the from io import open import, but it will not add encoding arguments.
We recommend adding them manually if the encoding is known.

8.7 Testing Strings

When everything is ported and tests are passing, it is a good idea to make sure your code handles strings correctly –
even in unusual situations.

Many of the tests recommended below exercise behavior that “works” in Python 2 (does not raise an exception – but
may produce subtly wrong results), while a Python 3 version will involve more thought and code.

You might discover mistakes in how the Python 2 version processes strings. In these cases, it might be a good idea to
enable new tests for Python 3 only: if some bugs in edge cases survived so far, they can probably live until Python 2
is retired. Apply your own judgement.

Things to test follow.

8.7.1 Non-ASCII data

Ensure that your software works (or, if appropriate, fails cleanly) with non-ASCII input, especially input from end-
users. Example characters to check are:

• é ñ ü Ð ř ů Å ß ç ı İ (from European personal names)

• ½ (alternate forms and ligatures)

• C ¥ (currency symbols)

• 𝜂 (various scripts)

• (symbols and emoji)

8.7.2 Encodings and locales

If your software handles multiple text encodings, or handles user-specified encodings, make sure this capability is
well-tested.

8.7. Testing Strings 29

https://docs.python.org/3/library/io.html#module-io

Conservative Python 3 Porting Guide Documentation, Release 1.0

Under Linux, run your software with the LC_ALL environment variable set to C and to tr_TR.utf8. Check handling
of any command-line arguments and environment variables that may contain non-ASCII characters.

8.7.3 Invalid input

Test how the code handles invalid text input. If your software deals with files, try it a on non-UTF8 filename.

Using Python 3, such a file can be created by:

with open(b'bad-\xFF-filename', 'wb') as file:
file.write(b'binary-\xFF-data')

30 Chapter 8. Strings

CHAPTER 9

Dictionaries

There are three most significant changes related to dictionaries in Python 3.

9.1 Removed dict.has_key()

• Fixer: python-modernize -wnf fissix.fixes.fix_has_key (See caveat below)

• Prevalence: Common

The dict.has_key() method, long deprecated in favor of the in operator, is no longer available in Python 3.

Instead of:

dictionary.has_key('keyname')

you should use:

'keyname' in dictionary

Note that the recommended fixer replaces all calls to any has_key method; it does not check that its object is actually
a dictionary.

If you use a third-party dict-like class, it should implement in already. If not, notify its author: it should have been
added as part of adding Python 3 support.

If your own codebase contains a custom dict-like class, add a __contains__() method to it to implement the in
operator. If possible, mark the has_key method as deprecated. Then run the fixer, and review the output. Typically,
the fixer’s changes will need to be reverted in tests for the has_key method itself.

If you are using objects with unrelated semantics for the attribute has_key, you’ll need to review the fixer’s output
and revert its changes for such objects.

31

https://docs.python.org/3/reference/datamodel.html#object.__contains__

Conservative Python 3 Porting Guide Documentation, Release 1.0

9.2 Changed Key Order

• Fixer: None

• Prevalence: Uncommon

The Python language specification has never guaranteed order of keys in a dictionary, and mentioned that applications
shouldn’t rely on it. In practice, however, the order of elements in a dict was usually remained consistent between
successive executions of Python 2.

Suppose we have a simple script with the following content:

$ cat order.py
dictionary = {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5}
print(list(dictionary.items()))

With python2, the result contained elements of dict in the same order for every execution:

$ python2 order.py
[('a', 1), ('c', 3), ('b', 2), ('e', 5), ('d', 4)]

$ python2 order.py
[('a', 1), ('c', 3), ('b', 2), ('e', 5), ('d', 4)]

$ python2 order.py
[('a', 1), ('c', 3), ('b', 2), ('e', 5), ('d', 4)]

The predictable ordering is a side effect of predictable hashing. Unfortunately, in some cases malicious users
could take advantage of the predictability to cause denial of service attacks. (See CVE-2012-1150 for more details.)
To counter this vulnerability, Python 2.6.8+ and 2.7.3+ allowed randomizing the hash function, and thus dictionary
order, on each invocation of the interpreter. This is done by setting the environment variable $PYTHONHASHSEED to
random:

$ PYTHONHASHSEED=random python2 order.py
[('b', 2), ('c', 3), ('a', 1), ('d', 4), ('e', 5)]

$ PYTHONHASHSEED=random python2 order.py
[('e', 5), ('d', 4), ('a', 1), ('c', 3), ('b', 2)]

In Python 3.3+, this setting is the default:

$ python3 order.py
[('a', 1), ('d', 4), ('e', 5), ('c', 3), ('b', 2)]

$ python3 order.py
[('c', 3), ('e', 5), ('d', 4), ('a', 1), ('b', 2)]

Additionally, CPython 3.6+ uses a new implementation of dictionaries, which makes them appear sorted by insertion
order (though you can only rely on this behavior in Python 3.7+):

$ python3 order.py
[('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e', 5)]

Unfortunately, an automated fixer for removing dependencies on dict order is not available. However, the issue can
be detected by running the code under Python 2 with PYTHONHASHSEED=random. Do that, and investigate and fix
any failures.

32 Chapter 9. Dictionaries

https://docs.python.org/2/library/functions.html#hash
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1150

Conservative Python 3 Porting Guide Documentation, Release 1.0

9.3 Dict Views and Iterators

• Fixer: python-modernize -wnf libmodernize.fixes.fix_dict_six (See caveat below)

• Prevalence: Common

The methods dict.keys(), dict.items() and dict.values() now return views instead of lists.

The following are the most important differences:

• Unlike lists, a view does not hold copy the data. Updates to the underlying dict are reflected in the view.

• The items in a view are not accessible by indexing. If you need that you’ll need to convert the view to a list (e.g.
list(d.values())).

• Key and value views support set operations, such as intersection and union.

The following common operations work the same between views and lists, as long as the underlying dict is not
modified:

• Iteration (e.g. for x in d.values())

• Member testing (e.g. if x in d.values())

• Length testing (e.g. len(d.values()))

The methods dict.iterkeys(), dict.iteritems() and dict.itervalues(), and the less-used dict.
viewkeys(), dict.viewitems() and dict.viewvalues(), are no longer available.

9.3.1 Cross-Version Iteration and Views

To get iterators in both Python 2 and Python 3, calls to iterkeys(), itervalues() and iteritems() can be
replaced by calls to functions from the Compatibility library: six library:

six.iterkeys(dictionary)
six.iteritems(dictionary)
six.itervalues(dictionary)

Similarly, viewkeys(), viewvalues() and viewitems() have compatibility wrappers in Compatibility li-
brary: six:

six.viewkeys(dictionary)
six.viewitems(dictionary)
six.viewvalues(dictionary)

In Python 3, both iter* and view* functions correspond to keys(), items(), and values().

However, we recommend avoiding the six wrappers whenever it’s sensible. For example, one often sees iter*
functions in Python 2 code:

for v in dictionary.itervalues():
print(v)

To be compatible with Python 3, this code can be changed to use six:

for v in six.itervalues(dictionary):
print(v)

. . . or a “native” method:

9.3. Dict Views and Iterators 33

https://docs.python.org/3/library/stdtypes.html#dict.keys
https://docs.python.org/3/library/stdtypes.html#dict.items
https://docs.python.org/3/library/stdtypes.html#dict.values
https://docs.python.org/2/library/stdtypes.html#dict.iterkeys
https://docs.python.org/2/library/stdtypes.html#dict.iteritems
https://docs.python.org/2/library/stdtypes.html#dict.itervalues
https://docs.python.org/2/library/stdtypes.html#dict.viewkeys
https://docs.python.org/2/library/stdtypes.html#dict.viewkeys
https://docs.python.org/2/library/stdtypes.html#dict.viewitems
https://docs.python.org/2/library/stdtypes.html#dict.viewvalues

Conservative Python 3 Porting Guide Documentation, Release 1.0

for v in dictionary.values():
print(v)

The latter is more readable. However, it can be argued that the former is more memory-efficient in Python 2, as a new
list is not created.

In most real-world use cases, the memory difference is entirely negligible: the extra list is a fraction of the size of
a dictionary, and tiny compared to the data itself. Any speed difference is almost always negligible. So, we suggest
using the more readable variant unless either:

• not all items are processed (for example, a break ends the loop early), or

• special optimizations are needed (for example, if the dictionary could contain millions of items or more).

9.3.2 Fixer caveats

The recommended fixer rewrites the usage of dict methods, but very often its changes are not ideal. We recommend
treating its output as “markers” that indicate code that needs to change, but addressing each such place individually by
hand.

For example, the fixer will change:

key_list = dictionary.keys()
for key in key_list:

print(key)

to:

key_list = list(dictionary.keys())
for key in key_list:

print(key)

This change is entirely unnecessary. The new version is less performant (in both Python 2 and Python 3), and less
readable. However, the fixer cannot detect that the list is only used for iteration, so it emits overly defensive code.

In this case, both speed and readability can be improved by iterating over the dict itself:

for key in dictionary:
print(key)

Also, the fixer will not change instances code that modifies a dictionary while iterating over it. The following is valid
in Python 2, where an extra copy of keys is iterated over:

for key in dictionary.keys():
del dictionary[key]

In Python 3, this will raise RuntimeError: dictionary changed size during iteration.

In this particular case, dictionary.clear() can replace the loop. More generally, this kind of issue may be
solved by creating a list explicitly:

for key in list(dictionary.keys()):
del dictionary[key]

The fixer will not change code like this. However, the RuntimeError makes the issue easy to detect.

34 Chapter 9. Dictionaries

CHAPTER 10

Iterators

Python 3 changes return values of several basic functions from list to iterator. The main reason for this change is that
iterators usually cause better memory consumption than lists.

If you need to keep Python2-compatible behavior, you can wrap the affected functions with a call to list. However,
in most cases it is better to apply a more specific fix.

10.1 New behavior of map() and filter()

• Fixers (See caveat below):

– python-modernize -wnf libmodernize.fixes.fix_map

– python-modernize -wnf libmodernize.fixes.fix_filter

• Prevalence: Common

In Python 3, the map() and filter() functions return iterators (map or filter objects, respectively). In Python
2, they returned lists.

In Python 2, the iterator behavior is available as itertools.imap() and itertools.ifilter().

The Compatibility library: six library provides the iterator behavior under names common to both Python versions:
from six.moves import map and from six.moves import filter.

10.1.1 Higher-order functions vs. List Comprehensions

The map and filter functions are often used with lambda functions to change or filter iterables. For example:

numbers = [1, 2, 3, 4, 5, 6, 7]

powers_of_two = map(lambda x: 2**x, numbers)

(continues on next page)

35

https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functions.html#filter
https://docs.python.org/2/library/itertools.html#itertools.imap
https://docs.python.org/2/library/itertools.html#itertools.ifilter

Conservative Python 3 Porting Guide Documentation, Release 1.0

(continued from previous page)

for number in filter(lambda x: x < 20, powers_of_two):
print(number)

In these cases, the call can be rewritten using a list comprehension, making the code faster and more readable:

numbers = [1, 2, 3, 4, 5, 6, 7]

powers_of_two = [2**x for x in numbers]

for number in [x for x in powers_of_two if x < 20]:
print(number)

If named functions, rather than lambda, are used, we also recommend rewriting the code to use a list comprehension.
For example, this code:

def power_function(x):
return(2**x)

powered = map(power_function, numbers)

should be changed to:

def power_function(x):
return(2**x)

powered = [power_function(num) for num in numbers]

Alternatively, you can keep the higher-order function call, and wrap the result in list. However, many people will
find the resulting code less readable:

def power_function(x):
return(2**x)

powered = list(map(power_function, numbers))

10.1.2 Iterators vs. Lists

In cases where the result of map or filter is only iterated over, and only once, it makes sense to use a generator
expression rather than a list. For example, this code:

numbers = [1, 2, 3, 4, 5, 6, 7]

powers_of_two = map(lambda x: 2**x, numbers)

for number in filter(lambda x: x < 20, powers_of_two):
print(number)

can be rewritten as:

numbers = [1, 2, 3, 4, 5, 6, 7]

powers_of_two = (2**x for x in numbers)

for number in (x**2 for x in powers_of_two if x < 20):
print(number)

36 Chapter 10. Iterators

Conservative Python 3 Porting Guide Documentation, Release 1.0

This keeps memory requirements to a minimum. However, the resulting generator object is much less powerful than a
list: it cannot be mutated, indexed or sliced, or iterated more than once.

10.1.3 Fixer Considerations

When the recommended fixers detect calls to map() or filter(), they add the imports from six.moves
import filter or from six.moves import map to the top of the file.

In many cases, the fixers do a good job discerning the different usages of map() and filter() and, if necessary,
adding a call to list(). But they are not perfect. Always review the fixers’ result with the above advice in mind.

The fixers do not work properly if the names map or filter are rebound to something else than the built-in functions.
If your code does this, you’ll need to do appropriate changes manually.

10.2 New behavior of zip()

• Fixer: python-modernize -wnf libmodernize.fixes.fix_zip (See caveat below)

• Prevalence: Common

Similarly to map and filter above, in Python 3, the zip() function returns an iterator (specifically, a zip object).
In Python 2, it returned a list.

The Compatibility library: six library provides the iterator behavior under a name common to both Python versions,
using the from six.moves import zip statement.

With this import in place, the call zip(...) can be rewritten to list(zip(...)). Note, however, that the list
is unnecessary when the result is only iterated over, and only iterated once, as in for items in zip(...).

The recommended fixer adds the mentioned import, and changes calls to list(zip(...) if necessary. If you
review the result, you might find additional places where conversion to list is not necessary.

The fixer does not work properly if the name zip is rebound to something else than the built-in function. If your code
does this, you’ll need to do appropriate changes manually.

10.3 New behavior of range()

• Fixer: python-modernize -wnf libmodernize.fixes.fix_xrange_six (See caveat below)

• Prevalence: Common

In Python 3, the range function returns an iterable range object, like the xrange() function did in Python 2. The
xrange function was removed in Python 3.

Note that Python 3’s range object, like xrange in Python 2, supports many list-like operations: for example in-
dexing, slicing, length queries using len(), or membership testing using in. Also, unlike map, filter and zip
objects, the range object can be iterated multiple times.

The Compatibility library: six library provides the “xrange” behavior in both Python versions, using the from
six.moves import range statement.

Using this import, the calls:

a_list = range(9)
a_range_object = xrange(9)

can be replaced with:

10.2. New behavior of zip() 37

https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/2/library/functions.html#xrange
https://docs.python.org/3/library/functions.html#len

Conservative Python 3 Porting Guide Documentation, Release 1.0

from six.moves import range

a_list = list(range(9))
a_range_object = range(9)

The fixer does the change automatically.

Note that in many cases, code will work the same under both versions with just the built-in range function. If the
result is not mutated, and the number of elements doesn’t exceed several thousands, the list and the range behave very
similarly. In this case, just change xrange to range; no import is needed.

If the name range is rebound to something else than the built-in function, the fixer will not work properly. In this
case you’ll need to do appropriate changes manually.

10.4 New iteration protocol: next()

• Fixer: python-modernize -wnf libmodernize.fixes.fix_next (See caveat below)

• Prevalence: Common

In Python 3, the built-in function next() is used to get the next result from an iterator. It works by calling the
__next__() special method, similarly to how len() calls iterator.__len__. In Python 2, iterators had the
next method.

The next() built-in was backported to Python 2.6+, where it calls the next method.

When getting items from an iterator, the next built-in function should be used instead of the next method. For
example, the code:

iterator = iter([1, 2, 3])
one = iterator.next()
two = iterator.next()
three = iterator.next()

should be rewritten as:

iterator = iter([1, 2, 3])
one = next(iterator)
two = next(iterator)
three = next(iterator)

Another change concerns custom iterator classes. These should provide both methods, next and __next__. An
easy way to do this is to define __next__, and assign that function to next as well:

class IteratorOfZeroes(object):
def __next__(self):

return 0

next = __next__ # for Python 2

The recommended fixer will only do the first change – rewriting next calls. Additionally, it will rewrite calls to any
method called next, whether it is used for iterating or not. If you use a class that uses next for an unrelated purpose,
check the fixer’s output and revert the changes for objects of this class.

The fixer will not add a __next__ method to your classes. You will need to do this manually.

38 Chapter 10. Iterators

https://docs.python.org/3/library/functions.html#next
https://docs.python.org/3/library/stdtypes.html#iterator.__next__
https://docs.python.org/3/library/functions.html#len

Conservative Python 3 Porting Guide Documentation, Release 1.0

10.5 Generators cannot raise StopIteration

• Fixer: None

• Prevalence: Rare

Since Python 3.7, generators cannot raise StopIteration directly, but must stop with return (or at the end of
the function). This change was done to prevent subtle errors when a StopIteration exception “leaks” between
unrelated generators.

For example, the following generator is considered a programming error, and in Python 3.7+ it raises
RuntimeError:

def count_to(maximum):
i = 0
while True:

yield i
i += 1
if i >= maximum:

raise StopIteration()

Convert the raise StopIteration() to return.

If your code uses a helper function that can raise StopIteration to end the generator that calls it, you will need
to move the returning logic to the generator itself.

10.5. Generators cannot raise StopIteration 39

Conservative Python 3 Porting Guide Documentation, Release 1.0

40 Chapter 10. Iterators

CHAPTER 11

Built-In Function Changes

Python 3 saw some changes to built-in functions. These changes are detailed in this section.

11.1 The print() function

• Fixer: python-modernize -wnf libmodernize.fixes.fix_print

• Prevalence: Very Common

Before Python first introduced keyword arguments, and even functions with variable numbers of arguments, it had
the print statement. It worked for simple use cases, but grew idiosyncratic syntax for advanced features like (not)
ending lines and output to arbitrary files:

print 'a + b =',
print a + b
print >> sys.stderr, 'Computed the sum'

In Python 3, the statement is gone. Instead, you can use the print() function, which has clear semantics (but
requires an extra pair of parentheses in the common case):

print('a + b =', end=' ')
print(a + b)
print('Computed the sum', file=sys.stderr)

The function form of print is available in Python 2.6+, but to use it, the statement form must be turned off with a
future import:

from __future__ import print_function

The recommended fixer will add the future import and rewrite all uses of print.

41

https://docs.python.org/3/library/functions.html#print

Conservative Python 3 Porting Guide Documentation, Release 1.0

11.2 Safe input()

• Fixer: python-modernize -wnf libmodernize.fixes.fix_input_six

• Prevalence: Uncommon

In Python 2, the function input() read a line from standard input, evaluated it as Python code, and returned the
result. This is almost never useful – most users aren’t expected to know Python syntax. It is also a security risk, as it
allows users to run arbitrary code.

Python 2 also had a sane version, raw_input(), which read a line and returned it as a string.

In Python 3, input() has the sane semantics, and raw_input was removed.

The Compatibility library: six library includes a helper, six.moves.input, that has the Python 3 semantics in
both versions.

The recommended fixer will import that helper as input, replace raw_input(...) with input(...), and
replace input(...)with eval(input(...)). After running it, examine the output to determine if any eval()
it produces is really necessary.

11.3 Removed file()

• Fixer: python-modernize -wnf libmodernize.fixes.fix_file (but see below)

• Prevalence: Rare

In Python 2, file() was the type of an open file. It was used in two ways:

• To open files, i.e. as an alias for open(). The documentation mentions that open is more appropriate for this
case.

• To check if an object is a file, as in isinstance(f, file).

The recommended fixer addresses the first use: it will rewrite all calls to file() to open(). If your code uses the
name file for a different function, you will need to revert the fixer’s change.

The fixer does not address the second case. There are many kinds of file-like objects in Python; in most circumstances
it is better to check for a read or write method instead of querying the type. This guide’s section on strings even
recommends using the io library, whose open function produces file-like objects that aren’t of the file type.

If type-checking for files is necessary, we recommend using a tuple of types that includes io.IOBase and, under
Python 2, file:

import io

try:
Python 2: "file" is built-in
file_types = file, io.IOBase

except NameError:
Python 3: "file" fully replaced with IOBase
file_types = (io.IOBase,)

...
isinstance(f, file_types)

42 Chapter 11. Built-In Function Changes

https://docs.python.org/2/library/functions.html#input
https://docs.python.org/2/library/functions.html#raw_input
https://docs.python.org/3/library/functions.html#input
https://docs.python.org/3/library/functions.html#eval
https://docs.python.org/2/library/functions.html#file
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/io.html#io.IOBase

Conservative Python 3 Porting Guide Documentation, Release 1.0

11.4 Removed apply()

• Fixer: python-modernize -wnf fissix.fixes.fix_apply (but see below)

• Prevalence: Common

In Python 2, the function apply() was built in. It was useful before Python added support for passing an argument
list to a function via the * syntax.

The code:

arguments = [7, 3]
apply(complex, arguments)

can be replaced with:

arguments = [7, 3]
complex(*arguments)

The recommended fixer replaces all calls to apply with the new syntax. If the variable apply names a different
function in some of your modules, revert the fixer’s changes in that module.

11.5 Moved reduce()

• Fixer: python-modernize -wnf fissix.fixes.fix_reduce

• Prevalence: Uncommon

In Python 2, the function reduce() was built in. In Python 3, in an effort to reduce the number of builtins, it was
moved to the functools module.

The new location is also available in Python 2.6+, so this removal can be fixed by importing it for all versions of
Python:

from functools import reduce

The recommended fixer will add this import automatically.

11.6 The exec() function

• Fixer: python-modernize -wnf fissix.fixes.fix_exec

• Prevalence: Rare

In Python 2, exec() was a statement. In Python 3, it is a function.

There were three cases for the statement form of exec:

exec some_code
exec some_code in globals
exec some_code in globals, locals

Similarly, the function exec takes one to three arguments:

11.4. Removed apply() 43

https://docs.python.org/2/library/functions.html#apply
https://docs.python.org/2/library/functions.html#reduce
https://docs.python.org/3/library/functools.html#module-functools
https://docs.python.org/3/library/functions.html#exec

Conservative Python 3 Porting Guide Documentation, Release 1.0

exec(some_code)
exec(some_code, globals)
exec(some_code, globals, locals)

In Python 2, the syntax was extended so the first expression may be a 2- or 3-tuple. This means the function-like
syntax works even in Python 2.

The recommended fixer will convert all uses of exec to the function-like syntax.

11.7 Removed execfile()

• Fixer: None recommended

• Prevalence: Very rare

Python 2 included the function execfile(), which executed a Python file by name. The call:

execfile(filename)

was roughly equivalent to:

from io import open

def compile_file(filename):
with open(filename, encoding='utf-8') as f:

return compile(f.read(), filename, 'exec')

exec(compile_file(filename))

If your code uses execfile, add the above compile_file function to an appropriate place, then change all calls
to execfile to exec as above.

Although Automated fixer: python-modernize has an execfile fixer, we don’t recommend using it, as it doesn’t
close the file correctly.

Note that the above hard-codes the utf-8 encoding (which also works if your code uses ASCII). If your code uses a
different encoding, substitute that. If you don’t know the encoding in advance, you will need to honor PEP 263 special
comments: on Python 3 use the above with tokenize.open() instead of open(), and on Python 2 fall back to
the old execfile().

The io.open() function is discussed in this guide’s section on strings.

11.8 Moved reload()

• Fixer: None

• Prevalence: Very rare

The reload() function was built-in in Python 2. In Python 3, it is moved to the importlib module.

Python 2.7 included an importlib module, but without a reload function. Python 2.6 and below didn’t have an
importlib module.

If your code uses reload(), import it conditionally if it doesn’t exist (using feature detection):

44 Chapter 11. Built-In Function Changes

https://docs.python.org/2/library/functions.html#execfile
https://www.python.org/dev/peps/pep-0263/
https://docs.python.org/3/library/tokenize.html#tokenize.open
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/2/library/functions.html#execfile
https://docs.python.org/3/library/importlib.html#importlib.reload
https://docs.python.org/3/howto/pyporting.html#use-feature-detection-instead-of-version-detection

Conservative Python 3 Porting Guide Documentation, Release 1.0

try:
Python 2: "reload" is built-in
reload

except NameError:
from importlib import reload

11.9 Moved intern()

• Fixer: None

• Prevalence: Very rare

The intern() function was built-in in Python 2. In Python 3, it is moved to the sys module.

If your code uses intern(), import it conditionally if it doesn’t exist (using feature detection):

try:
Python 2: "intern" is built-in
intern

except NameError:
from sys import intern

11.10 Removed coerce()

• Fixer: None

• Prevalence: Rare

Python 3 removes the deprecated function coerce(), which was only useful in early versions of Python.

If your code uses it, modify the code to not require it.

If any of your classes defines the special method __coerce__, remove that as well, and test that the removal did not
break semantics.

11.9. Moved intern() 45

https://docs.python.org/3/library/sys.html#sys.intern
https://docs.python.org/3/howto/pyporting.html#use-feature-detection-instead-of-version-detection
https://docs.python.org/2/library/functions.html#coerce

Conservative Python 3 Porting Guide Documentation, Release 1.0

46 Chapter 11. Built-In Function Changes

CHAPTER 12

Comparing and Sorting

Python 3 is strict when comparing objects of disparate types. It also drops cmp-based comparison and sorting in favor
of rich comparisons and key-based sorting, modern alternatives that have been available at least since Python 2.4.
Details and porting strategies follow.

12.1 Unorderable Types

The strict approach to comparing in Python 3 makes it generally impossible to compare different types of objects.

For example, in Python 2, comparing int and str works (with results that are unpredictable across Python imple-
mentations):

>>> 2 < '2'
True

but in Python 3, it fails with a well described error message:

>>> 2 < '2'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unorderable types: int() < str()

The change usually manifests itself in sorting lists: in Python 3, lists with items of different types are generally not
sortable.

If you need to sort heterogeneous lists, or compare different types of objects, implement a key function to fully describe
how disparate types should be ordered.

12.2 Rich Comparisons

• Fixer: None

47

Conservative Python 3 Porting Guide Documentation, Release 1.0

• Prevalence: Common

The __cmp__() special method is no longer honored in Python 3.

In Python 2, __cmp__(self, other) implemented comparison between two objects, returning a negative value
if self < other, positive if self > other, and zero if they were equal.

This approach of representing comparison results is common in C-style languages. But, early in Python 2 development,
it became apparent that only allowing three cases for the relative order of objects is too limiting.

This led to the introduction of rich comparison methods, which assign a special method to each operator:

Operator Method
== __eq__
!= __ne__
< __lt__
<= __le__
> __gt__
>= __ge__

Each takes the same two arguments as cmp, and must return either a result value (typically Boolean), raise an exception,
or return NotImplemented to signal the operation is not defined.

In Python 3, the cmp style of comparisons was dropped. All objects that implemented __cmp__ must be updated to
implement all of the rich methods instead. (There is one exception: on Python 3, __ne__ will, by default, delegate
to __eq__ and return the inverted result . However, this is not the case in Python 2.)

To avoid the hassle of providing all six functions, you can implement __eq__, __ne__, and only one of the ordering
operators, and use the functools.total_ordering() decorator to fill in the rest. Note that the decorator is
not available in Python 2.6. If you need to support that version, you’ll need to supply all six methods.

The @total_ordering decorator does come with the cost of somewhat slower execution and more complex stack
traces for the derived comparison methods, so defining all six explicitly may be necessary in some cases even if Python
2.6 support is dropped.

As an example, suppose that you have a class to represent a person with __cmp__() implemented:

class Person(object):
def __init__(self, firstname, lastname):

self.first = firstname
self.last = lastname

def __cmp__(self, other):
return cmp((self.last, self.first), (other.last, other.first))

def __repr__(self):
return "%s %s" % (self.first, self.last)

With total_ordering, the class would become:

from functools import total_ordering

@total_ordering
class Person(object):

def __init__(self, firstname, lastname):
self.first = firstname
self.last = lastname

(continues on next page)

48 Chapter 12. Comparing and Sorting

https://docs.python.org/2/reference/datamodel.html#object.__cmp__
https://docs.python.org/3/library/functools.html#functools.total_ordering

Conservative Python 3 Porting Guide Documentation, Release 1.0

(continued from previous page)

def __eq__(self, other):
return ((self.last, self.first) == (other.last, other.first))

def __ne__(self, other):
return not (self == other)

def __lt__(self, other):
return ((self.last, self.first) < (other.last, other.first))

def __repr__(self):
return "%s %s" % (self.first, self.last)

If total_ordering cannot be used, or if efficiency is important, all methods can be given explicitly:

class Person(object):

def __init__(self, firstname, lastname):
self.first = firstname
self.last = lastname

def __eq__(self, other):
return ((self.last, self.first) == (other.last, other.first))

def __ne__(self, other):
return ((self.last, self.first) != (other.last, other.first))

def __lt__(self, other):
return ((self.last, self.first) < (other.last, other.first))

def __le__(self, other):
return ((self.last, self.first) <= (other.last, other.first))

def __gt__(self, other):
return ((self.last, self.first) > (other.last, other.first))

def __ge__(self, other):
return ((self.last, self.first) >= (other.last, other.first))

def __repr__(self):
return "%s %s" % (self.first, self.last)

12.3 The cmp Function

• Fixer: None

• Prevalence: Common

As part of the move away from cmp-style comparisons, the cmp() function was removed in Python 3.

If it is necessary (usually to conform to an external API), you can provide it with this code:

def cmp(x, y):
"""
Replacement for built-in function cmp that was removed in Python 3

(continues on next page)

12.3. The cmp Function 49

https://docs.python.org/2/library/functions.html#cmp

Conservative Python 3 Porting Guide Documentation, Release 1.0

(continued from previous page)

Compare the two objects x and y and return an integer according to
the outcome. The return value is negative if x < y, zero if x == y
and strictly positive if x > y.
"""

return (x > y) - (x < y)

The expression used is not straightforward, so if you need the functionality, we recommend adding the full, docu-
mented function to your project’s utility library.

12.4 The cmp Argument

• Fixer: None

• Prevalence: Uncommon

In Python 2, .sort() or sorted() functions have a cmp parameter, which determines the sort order. The argument
for cmp is a function that, like all cmp-style functions, returns a negative, zero, or positive result depending on the
order of its two arguments.

For example, given a list of instances of a Person class (defined above):

>>> actors = [Person('Eric', 'Idle'),
... Person('John', 'Cleese'),
... Person('Michael', 'Palin'),
... Person('Terry', 'Gilliam'),
... Person('Terry', 'Jones')]
...

one way to sort it by last name in Python 2 would be:

>>> def cmp_last_name(a, b):
... """ Compare names by last name"""
... return cmp(a.last, b.last)
...
>>> sorted(actors, cmp=cmp_last_name)
['John Cleese', 'Terry Gilliam', 'Eric Idle', 'Terry Jones', 'Michael Palin']

This function is called many times – O(n log n) – during the comparison.

As an alternative to cmp, sorting functions can take a keyword-only key parameter, a function that returns the key
under which to sort:

>>> def keyfunction(item):
... """Key for comparison by last name"""
... return item.last
...
>>> sorted(actors, key=keyfunction)
['John Cleese', 'Terry Gilliam', 'Eric Idle', 'Terry Jones', 'Michael Palin']

The advantage of this approach is that this function is called only once for each item. When simple types such as
tuples, strings, and numbers are used for keys, the many comparisons are then handled by optimized C code. Also,
in most cases key functions are more readable than cmp: usually, people think of sorting by some aspect of an object
(such as last name), rather than by comparing individual objects. The main disadvantage is that the old cmp style is
commonly used in C-language APIs, so external libraries are likely to provide similar functions.

50 Chapter 12. Comparing and Sorting

Conservative Python 3 Porting Guide Documentation, Release 1.0

In Python 3, the cmp parameter was removed, and only key (or no argument at all) can be used.

There is no fixer for this change. However, discovering it is straightforward: the calling sort with the cmp argument
raises TypeError in Python 3. Each cmp function must be replaced by a key function. There are two ways to do this:

• If the function did a common operation on both arguments, and then compared the results, replace it by just the
common operation. In other words, cmp(f(a), f(b)) should be replaced with f(item)

• If the above does not apply, wrap the cmp-style function with functools.cmp_to_key(). See its docu-
mentation for details.

The cmp_to_key function is not available in Python 2.6, so if you need to support that version, you’ll need
copy it from Python sources

12.4. The cmp Argument 51

https://docs.python.org/3/library/functools.html#functools.cmp_to_key
https://hg.python.org/cpython/file/2.7/Lib/functools.py

Conservative Python 3 Porting Guide Documentation, Release 1.0

52 Chapter 12. Comparing and Sorting

CHAPTER 13

Classes

Python 3 drops support for “old-style” classes, and introduces dedicated syntax for metaclasses. Read on for details.

13.1 New-Style Classes

• Fixer: None

• Prevalence: Very common

Python 2 had two styles of classes: “old-style” and “new-style”.

Old-style classes were defined without a superclass (or by deriving from other old-style classes):

class OldStyle:
pass

class OldStyleChild(OldStyle):
pass

New-style classes derive from a built-in class – in most cases, object:

class NewStyle(object):
pass

class NewInt(int):
pass

In Python 3, all classes are new-style: object is the default superclass.

For code compatible across Python versions, all classes should be defined with explicit superclasses: add (object)
to all class definitions with no superclass list. To find all places to change, you can run the following command over
the codebase:

grep --perl 'class\s+[a-zA-Z_]+:'

53

Conservative Python 3 Porting Guide Documentation, Release 1.0

However, you will need to test the result thoroughly. Old- and new-style classes have slightly differend semantics,
described below.

13.1.1 Method resolution

From a developer’s point of view, the main difference between the two is method resolution in multiple inheritance
chains. This means that if your code uses multiple inheritance, there can be differences between which method is used
for a particular subclass.

The differences are summarized on the Python wiki, and the new semantics are explained in a Howto document from
Python 2.3.

13.1.2 Object model details

Another difference is in the behavior of arithmetic operations: in old-style classes, operators like + or % generally
coerced both operands to the same type. In new-style classes, instead of coercion, several special methods (e.g.
__add__/__radd__) may be tried to arrive at the result.

Other differences are in the object model: only new-style classes have __mro__ or mro(), and writing to special
attributes like __bases__, __name__, __class__ is restricted or impossible.

13.2 Metaclasses

• Fixer: python-modernize -wnf libmodernize.fixes.fix_metaclass

• Prevalence: Rare

For metaclasses, Python 2 uses a specially named class attribute:

class Foo(Parent):
__metaclass__ = Meta

In Python 3, metaclasses are more powerful, but the metaclass needs to be known before the body of the class statement
is executed. For this reason, metaclasses are now specified with a keyword argument:

class Foo(Parent, metaclass=Meta):
...

The new style is not compatible with Python 2 syntax. However, the Compatibility library: six library provides a
workaround that works in both versions – a base class named with_metaclass. This workaround does a bit of
magic to ensure that the result is the same as if a metaclass was specified normally:

import six

class Foo(six.with_metaclass(Meta, Parent)):
pass

The recommended fixer will import six and add with_metaclass quite reliably, but do test that the result still
works.

54 Chapter 13. Classes

https://wiki.python.org/moin/NewClassVsClassicClass
https://www.python.org/download/releases/2.3/mro/
https://docs.python.org/3/library/stdtypes.html#class.__mro__
https://docs.python.org/3/library/stdtypes.html#class.mro

CHAPTER 14

Comprehensions

List comprehensions, a shortcut for creating lists, have been in Python since version 2.0. Python 2.4 added a similar
feature – generator expressions; then 2.7 (and 3.0) introduced set and dict comprehensions.

All three can be thought as syntactic sugar for defining and calling a generator function, but since list comprehensions
came before generators, they behaved slightly differently than the other two. Python 3 removes the differences.

14.1 Leaking of the Iteration Variable

• Fixer: None

• Prevalence: Rare

In Python 2, the iteration variable(s) of list comprehensions were considered local to the code containing the expres-
sion. For example:

>>> powers = [2**i for i in range(10)]
>>> print(i)
9

This did not apply apply to generators, or to set/dict comprehensions (added in Python 2.7).

In Python 3, list expressions have their own scope: they are functions, just defined with a special syntax, and automat-
ically called. Thus, the iteration variable(s) don’t “leak” out:

>>> powers = [2**i for i in range(10)]
>>> print(i)
Traceback (most recent call last):

File "...", line 1, in <module>
NameError: name 'i' is not defined

In most cases, effects of the change are easy to find, as running the code under Python 3 will result in a NameError. To
fix this, either rewrite the code to not use the iteration variable after a list comprehension, or convert the comprehension
to a for loop:

55

Conservative Python 3 Porting Guide Documentation, Release 1.0

powers = []
for i in range(10):

powers.append(2**i)

In some cases, the change might silently cause different behavior. This is when a variable of the same name is set
before the comprehension, or in a surrounding scope. For example:

i = 'global'
def foo():

powers = [2**i for i in range(10)]
return i

>>> foo() # Python 2
9
>>> foo() # Python 3
'global'

Unfortunately, you will need to find and fix these cases manually.

14.2 Comprehensions over Tuples

• Fixer: python-modernize -wnf fissix.fixes.fix_paren

• Prevalence: Rare

Python 2 allowed list comprehensions over bare, non-parenthesized tuples:

>>> [i for i in 1, 2, 3]
[1, 2, 3]

In Python 3, this is a syntax error. The tuple must be enclosed in parentheses:

>>> [i for i in (1, 2, 3)]
[1, 2, 3]

The recommended fixer will add the parentheses in the vast majority of cases. It does not deal with nested loops, such
as [x*y for x in 1, 2 for y in 1, 2]. These cases are easily found, since they raise SyntaxError
under Python 3. If they appear in your code, add the parentheses manually.

56 Chapter 14. Comprehensions

CHAPTER 15

Other Core Object Changes

This page details miscellaneous changes to core objects: functions and classes.

15.1 Function Attributes

• Fixer: python-modernize -wnf fissix.fixes.fix_funcattrs (but see below)

• Prevalence: Rare

In Python, functions are mutable objects that support custom attributes. In such cases, special attributes (ones provided
or used by the Python language itself) are prefixed and postfixed by double underscores.

Function objects predate this convention: their built-in attributes were named with the func_ prefix instead. However,
the new “dunder” names were available, as aliases, even in Python 2.

Python 3 removes the old names for these attributes:

Legacy name New name
func_closure __closure__
func_code __code__
func_defaults __defaults__
func_dict __dict__
func_doc __doc__
func_globals __globals__
func_name __name__

The recommended fixer will replace all of the old attribute names with the new ones. However, it does not check that
the attribute is retreived from a function object. If your code uses the func_* names for other purposes, you’ll need
to revert the fixer’s changes.

57

Conservative Python 3 Porting Guide Documentation, Release 1.0

15.2 __oct__, __hex__

• Fixer: None

• Prevalence: Rare

The __oct__ and __hex__ special methods customized conversion of custom classes to octal or hexadecimal srting
representation, i.e. the behavior of the oct() and hex() built-in functions.

Python 3 adds the bin() function, which converts to binary. Instead of introducing a third name like __bin__, all
three now just use the integer representation of an object, as returned by the __index__ method. The __oct__ and
__hex__ methods are no longer used.

To support both Python 2 and 3, all three must be specified:

def IntLike:
def __init__(self, number):

self._number = int(number)

def __index__(self):
return self._number

def __hex__(self):
return hex(self._number)

def __oct__(self):
return oct(self._number)

If your code defines __oct__ or __hex__, add an __index__ method that returns an appropriate integer. If your
__oct__ or __hex__ did not return an octal/hexadecimal representation of an integer before, you’ll need to change
any code that relied on them.

15.3 Old-style slicing: __getslice__, __setslice__,
__delslice__

• Fixer: None

• Prevalence: Rare

The special methods __getslice__, __setslice__ and __delslice__, which had been deprecated since
Python 2.0, are no longer used in Python 3. Item access was unified under __getitem__, __setitem__ and
__delitem__.

If your code uses them, convert them into equivalent __getitem__, __setitem__ and __delitem__, possibly
adding the functionality to existing methods.

Keep in mind that slice objects have a step attribute in addition to start and stop. If your class does not
support all steps, remember to raise an error for the ones you don’t support.

For example, the equivalent of:

class Slicable(object):
def __init__(self):

self.contents = list(range(10))

def __getslice__(self, start, stop):
return self.contents[start:stop]

(continues on next page)

58 Chapter 15. Other Core Object Changes

https://docs.python.org/3/library/functions.html#oct
https://docs.python.org/3/library/functions.html#hex
https://docs.python.org/3/library/functions.html#bin
https://docs.python.org/3/library/functions.html#slice

Conservative Python 3 Porting Guide Documentation, Release 1.0

(continued from previous page)

def __setslice__(self, start, stop, value):
self.contents[start:stop] = value

def __delslice__(self, start, stop):
del self.contents[start:stop]

would be:

class Slicable(object):
def __init__(self):

self.contents = list(range(10))

def __getitem__(self, item):
if isinstance(item, slice):

if item.step not in (1, None):
raise ValueError('only step=1 supported')

return self.contents[item.start:item.stop]
else:

raise TypeError('non-slice indexing not supported')

def __setitem__(self, item, value):
if isinstance(item, slice):

if item.step not in (1, None):
raise ValueError('only step=1 supported')

self.contents[item.start:item.stop] = value
else:

raise TypeError('non-slice indexing not supported')

def __delitem__(self, item):
if isinstance(item, slice):

if item.step not in (1, None):
raise ValueError('only step=1 supported')

del self.contents[item.start:item.stop]
else:

raise TypeError('non-slice indexing not supported')

15.4 Customizing truthiness: __bool__

• Fixer: None

• Prevalence: Common

Python 2 used the __nonzero__ method to convert an object to boolean, i.e. to provide an implementation for
bool().

Other special methods that implement behavior for built-in functions are named after their respective functions. Keep-
ing with this theme, Python 3 uses the name __bool__ instead of __nonzero__.

To make your code compatible, you can provide one implementation, and use an alias for the other name:

class Falsy(object):
def __bool__(self):

return False

__nonzero__ = __bool__

15.4. Customizing truthiness: __bool__ 59

https://docs.python.org/3/library/functions.html#bool

Conservative Python 3 Porting Guide Documentation, Release 1.0

Do this change in all classes that implement __nonzero__.

15.5 Unbound Methods

Python 2 had two kinds of methods: unbound methods, which you could retreive from a class object, and bound
methods, which were retreived from an instance:

>>> class Hello(object):
... def say(self):
... print('hello world')
...
>>> hello_instance = Hello()
>>> print(Hello.say)
<unbound method Hello.say>
>>> print(hello_instance.say)
<bound method Hello.say of <__main__.Hello object at 0x7f6f40afa790>>

Bound methods inject self in each call to the method:

>>> hello_instance.say()
hello world

Unbound methods checked if their first argument is an instance of the appropriate class:

>>> Hello.say(hello_instance)
hello world
>>> Hello.say(1)
TypeError: unbound method say() must be called with Hello instance as first argument
→˓(got int instance instead)

In Python 3, the concept of unbound methods is gone. Instead, regular functions are used:

>>> class Hello(object):
... def say(self):
... print('hello world')
...
>>> print(Hello.say)
<function Hello.say at 0x7fdc2803cd90>

If your code relies on unbound methods type-checking the self argument, or on the fact that unbound methods had
a different type than functions, you will need to modify your code. Unfortunately, there is no automated way to tell if
that’s the case.

60 Chapter 15. Other Core Object Changes

CHAPTER 16

Invoking Python

While this is not a change in Python 3, the transition increased the number of systems that have more than one Python
interpreter installed: it is not uncommon for python, python2, python3, python3.6 and python3.9 to all
be valid system commands; other interpreters may be installed in non-standard locations.

This makes it important to use the correct command for each situation.

16.1 Current interpreter

The current Python interpreter should be invoked via sys.executable.

Python provides the path of the currently running interpreter as sys.executable. This variable should be preferred
over python or other hard-coded commands.

For example, rather than:

subprocess.Popen('python', 'somescript.py')

use:

subprocess.Popen(sys.executable, 'somescript.py')

The assumption that 'python' is correct is only valid in tightly controlled environments; however, even in those
environments sys.executable is likely to be correct.

The documentation does include a warning:

If Python is unable to retrieve the real path to its executable, sys.executable will be an empty string
or None.

In practice, this does not apply to mainstream platforms. If sys.executable is unusable, then either your plat-
form’s concept of launching a process via filename is somehow unusual (and in this case you should know what to
do), or there’s an issue in Python itself.

61

https://docs.python.org/3/library/sys.html#sys.executable

Conservative Python 3 Porting Guide Documentation, Release 1.0

16.2 Unix shebangs

On Unix, executables written in Python must have a shebang line identifying the interpreter. The correct shebang to
use will depend on the environment you are targeting and on the version compatibility of the project.

General recommendations for Python shebangs are listed in the For Python script publishers section of PEP 394.

62 Chapter 16. Invoking Python

https://www.python.org/dev/peps/pep-0394/#for-python-script-publishers

CHAPTER 17

Other Changes

This page documents a few miscellaneous topics at the edges of this guide’s scope: low-level buffers, doctests, and
bytecode cache files.

17.1 Raw buffer protocol: buffer and memoryview

• Fixer: None

• Prevalence: Very rare

Python 2 used a buffer interface for sharing blocks of memory between Python objects and other libraries.

The buffer object and the corresponding C API proved inaequate, and over Python 2.6 and 2.7, a new mechanism was
implemented: the Py_buffer structure and the memoryview object.

In Python 3, the buffer object and the related C API is removed.

Unfortunately, the specifics of low-level interfaces between Python and non-Python libraries are too different across
projects for us to offer universal advice on porting to the new API. If your code uses buffer (or the PyBuffer C
API), you will need to refer to the Python documentation for details, and combine that with knowledge about your
particular interface.

17.2 Doctests

• Fixer: None

• Prevalence: Common

Doctests are a common practice for quick tests and testing documentation. They work by extracting snippets example
code and its output in documentation, running the code, and verifying that its result matches, textually, the example
output.

63

https://docs.python.org/2/library/functions.html#buffer
https://docs.python.org/2/c-api/objbuffer.html
https://docs.python.org/3/c-api/buffer.html
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/2/c-api/buffer.html
https://docs.python.org/3/library/doctest.html

Conservative Python 3 Porting Guide Documentation, Release 1.0

This relies on minute details of textual representation of Python objects, which is generally not under any backwards-
compatibility guarantee and may change at any time – even across minor versions of Python (e.g. 2.6 to 2.7 or 3.5 to
3.6).

Note: Some examples of what changed between Python 2 and 3 are:

• String have different u and b prefixes depending on if they’re bytes or text.

• Large integers lost the L suffix.

• The order of items in dictionaries may be different (and unpredictable).

Doctests are a good way to ensure that the documentation is correct (i.e. it doesn’t contain broken examples), but they
are not a good way to actually test the code.

If your code uses doctests as the main means of testing, rewrite them as tests that do not rely on exact textual output.
You can use the built-in unittest, or the third-party pytest library, among others.

Once your doctests are only testing documentation, we recommend the following strategy:

• Keep running doctests under Python 2

• Port all code to be compatible with (and tested on) both Python 2 and 3

• At one moment, update examples in the docs, and start only using Python 3 to run the doctests.

Since the code is tested elsewhere, it generally does not matter that code examples are tested under only one of the
supported Python versions.

17.3 Reorganization of .pyc files

Since compiling Python code is a relatively expensive operation, and many modules do not change often, Python
caches compiled bytecode in .pyc files.

In Python 2, .pyc files were written in the same directory as the corresponding .py source files, with only a c added
to the filename. The exact mechanism had two major drawbacks:

• Bytecode is not compatible across Python versions. If the same module was being imported by different versions
of Python, each would overwrite the .pyc file with its own flavor of bytecode on import. This would invalidate
the cache for all other versions.

• The .pyc cache could be used even without a corresponding .py file, which allowed some space saving (by
distributing only the compiled file). However, if one deleted a .py file but forgot to also remove the .pyc,
Python would act as if the module was still present. This was quite confusing, especially for beginners.

Python 3 puts .pyc files in a separate directory called __pycache__, and adds version information to the filename.
The new mechanism avoids the above two problems: per-version caches are separated, and if the .py source is
missing, the .pyc file is not considered.

If your code relies on the location of .pyc files (for example, if your build/packaging system doesn’t handle Python
3), you will need to update to the new location.

If you rely on importing .pyc files without corresponding source, you will need to move the .pyc to the old location,
and remove the version tag. For example, move:

__pycache__/foo.cpython-36.pyc

to:

64 Chapter 17. Other Changes

https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.pytest.org

Conservative Python 3 Porting Guide Documentation, Release 1.0

foo.pyc

Under this name, the .pyc will be recognized by Python 3’s import machinery.

17.3. Reorganization of .pyc files 65

Conservative Python 3 Porting Guide Documentation, Release 1.0

66 Chapter 17. Other Changes

CHAPTER 18

Indices and tables

• genindex

• search

67

Conservative Python 3 Porting Guide Documentation, Release 1.0

68 Chapter 18. Indices and tables

Index

Symbols
*

star import, 18
.pyc files, 64
__bool__, 59
__cmp__, 47
__delslice__, 58
__div__, 21
__eq__, 47
__floordiv__, 21
__ge__, 47
__getslice__, 58
__gt__, 47
__hex__, 57
__le__, 47
__lt__, 47
__ne__, 47
__next__, 38
__nonzero__, 59
__oct__, 57
__setslice__, 58
__truediv__, 21
<>

inequality operator, 10
‘

backtick operator, 10

A
apply, 42
AttributeError

func_closure, 57
func_code, 57
func_defaults, 57
func_dict, 57
func_doc, 57
func_globals, 57
func_name, 57
has_key(), 31
string module, 20

sys.exc_traceback, 15
sys.exc_type, 15
sys.exc_value, 15

B
b (string prefix), 27
backtick (‘), 10
bound method, 60
buffer, 63
bytecode cache, 64
bytes, 23

C
cmp

argument of sort(), 50
removed built-in function, 49

coerce, 45
comparison, 47

D
decode, 26
dependencies, 3
diamond operator (<>), 10
dict

key order, 31
views, 32

division, 21
doctest, 63
dropping Python 2, 5

E
encode, 26
except

new syntax, 13
exception scope, 14
exec, 43
execfile, 44

F
False, 10

69

Conservative Python 3 Porting Guide Documentation, Release 1.0

file, 42
file I/O, 28
filter, 35
func_* attributes, 57

G
grave operator (‘), 10

H
has_key, 31

I
import *, 18
import cycles, 18
ImportError

import cycles, 18
removed modules, 19
renamed modules, 19
urllib, 20
urllib2, 20
urlparse, 20

inequality, 10
input, 41
int, 22
intern, 45
iterating over exceptions, 14

L
list comprehensions

iteration variable, 55
over tuples, 56

long, 22

M
map, 35
memoryview, 63
metaclasses, 54
method resolution order, 54
modernize, 7
MRO, 54

N
NameError

apply, 42
buffer, 63
cmp, 49
coerce, 45
execfile, 44
file, 42
from caught exception, 14
import cycles, 18
intern, 45
list comprehensions, 55
raw_input, 41

reduce, 43
reload, 44
StandardError, 15

native string, 25
new-style class, 53
next, 38
None, 10

O
object

object as base class, 53
old-style class, 53
open, 28

P
porting process, 4
print, 41
py3c, 8
pyc files, 64
pylint -py3k, 8
Python 2.5, 3
python-modernize, 7

R
raise

new syntax, 13
non-exceptions, 15

range, 37
raw_input, 41
reduce, 43
reload, 44
removed modules, 19
renamed modules, 19

S
six, 7
sort, 47
StandardError (removed exception), 15
str, 23
string (module), 20
SyntaxError

except, 13
exec, 43
False, 10
import *, 18
L suffix on numbers, 22
list comprehensions over tuples, 56
None, 10
octal literals, 23
print, 41
raise, 13
True, 10
tuple in argument list, 9

sys.exc_traceback, 15

70 Index

Conservative Python 3 Porting Guide Documentation, Release 1.0

sys.exc_type, 15
sys.exc_value, 15

T
tabs and spaces, 9
tests, 3

text and bytes, 29
text, 23
True, 10
TypeError

__cmp__, 47
comparison, 47
division, 21
int & long, 22
iterating over exception, 14
key function, 50
mixing text and bytes, 27
object cannot be interpreted as an

integer, 57
object is not subscriptable, 58
raise, 15
sort, 47

U
u (string prefix), 27
unbound method, 60
unicode, 23
urllib, 20
urllib2, 20
urlparse, 20

Z
zip, 37

Index 71

	The Porting Process
	Make Sure your Dependencies are Ported
	Run the Tests
	Drop Python 2.5 and Lower
	Port the Code
	Drop Python 2

	Tools
	Compatibility library: six
	Automated fixer: python-modernize
	Compatibility headers and guide for C extensions: py3c
	Automated checker: pylint --py3k

	Syntax Changes
	Tabs and Spaces
	Tuple Unpacking in Parameter Lists
	Backticks
	The Inequality Operator
	New Reserved Words
	Other Syntax Changes

	Exceptions
	The new except syntax
	The new raise syntax
	Caught Exception “Scope”
	Iterating Exceptions
	Raising Non-Exceptions
	The Removed StandardError
	Removed sys.exc_type, sys.exc_value, sys.exc_traceback

	Importing
	Absolute imports
	import * in Functions
	Import Cycles

	Standard Library Reorganization
	Renamed Modules
	Removed modules
	The urllib modules
	The string module

	Numbers
	Division
	Unification of int and long
	Octal Literals

	Strings
	The Native String
	Conversion between text and bytes
	String Literals
	String operations
	Type checking
	File I/O
	Testing Strings

	Dictionaries
	Removed dict.has_key()
	Changed Key Order
	Dict Views and Iterators

	Iterators
	New behavior of map() and filter()
	New behavior of zip()
	New behavior of range()
	New iteration protocol: next()
	Generators cannot raise StopIteration

	Built-In Function Changes
	The print() function
	Safe input()
	Removed file()
	Removed apply()
	Moved reduce()
	The exec() function
	Removed execfile()
	Moved reload()
	Moved intern()
	Removed coerce()

	Comparing and Sorting
	Unorderable Types
	Rich Comparisons
	The cmp Function
	The cmp Argument

	Classes
	New-Style Classes
	Metaclasses

	Comprehensions
	Leaking of the Iteration Variable
	Comprehensions over Tuples

	Other Core Object Changes
	Function Attributes
	__oct__, __hex__
	Old-style slicing: __getslice__, __setslice__, __delslice__
	Customizing truthiness: __bool__
	Unbound Methods

	Invoking Python
	Current interpreter
	Unix shebangs

	Other Changes
	Raw buffer protocol: buffer and memoryview
	Doctests
	Reorganization of .pyc files

	Indices and tables
	Index

